일본과 해외의 조사회사나 출판사로부터 출판된 산업 조사 보고서 및 데이터 판매 · 연간 서비스 · 맞춤 정보 제공 ChosaReport-Korea 주식회사 SEMABIZ

검색 증강 생성(RAG) 시장 규모, 성장 및 동향 분석 보고서 – 2030년까지의 세계 예측

Retrieval-Augmented Generation (RAG) Market – Global Forecast To 2030

검색 증강 생성(RAG) 시장 – 제공(솔루션(RAG 지원 플랫폼, 데이터 관리 및 인덱싱 계층, 검색 모델), 서비스), 유형, 애플리케이션, 최종 사용자 및 배포 유형 – 2030년까지의 세계 예측

Retrieval-augmented Generation (RAG) Market by Offering (Solution (RAG-enabled platforms, data management and indexing layers, retrieval & search models), Services), Type, Application, End User, and Deployment Type – Global Forecast to 2030

조사회사MarketsandMarkets
출판년월2025년10월
페이지 수350
도표 수286
라이센스Single User License
가격USD 4,950
구성영문조사보고서

    주문/문의    조사회사/라이센스/납기안내

MarketsandMarkets: 검색 증강 생성(RAG) 시장은 2025년에 19억 4천만 달러 규모로 추산되며, 2030년에는 연평균 성장률 38.4%로 98억 6천만 달러에 이를 것으로 예상됩니다.

Microsoft, AWS, Google, Anthropic, Cohere 등 주요 기술 기업들은 RAG 기반 솔루션, 통합 및 파트너십에 막대한 투자를 하고 있습니다. 클라우드 하이퍼스케일러들은 Azure OpenAI Service 및 AWS Bedrock과 같은 엔터프라이즈 AI 솔루션에 RAG를 내장하여 기업이 검색 기능을 생성 AI 애플리케이션에 더욱 쉽게 통합할 수 있도록 지원하고 있습니다. 이러한 생태계 확장은 RAG에 대한 인지도를 높일 뿐만 아니라 기업에 즉시 사용 가능하고 확장 가능한 솔루션을 제공함으로써 도입 장벽을 낮춥니다. RAG 스타트업에 대한 지속적인 벤처 투자와 모델 제공업체와 검색 인프라 공급업체 간의 파트너십은 시장의 성장 궤도를 더욱 가속화하고 있습니다.

이 시장 조사는 제품, 유형, 애플리케이션, 최종 사용자, 배포 유형 및 지역을 포함한 다양한 세그먼트에 걸친 검색 증강 생성(RAG) 시장 규모와 성장 잠재력을 다룹니다. 연구 대상 제품에는 솔루션(RAG 지원 플랫폼, 데이터 관리 및 인덱싱 계층, 검색 모델 및 기타 솔루션)과 서비스(관리형 및 전문형)가 포함됩니다. 유형 세그먼트에는 기본형 및 강화형 RAG, 에이전트형 및 적응형 RAG, 지식 구조화 및 메모리 기반 RAG, 개인 정보 보호 및 분산형 RAG 및 기타 유형이 포함됩니다. 애플리케이션 세그먼트에는 엔터프라이즈 검색, 도메인별 데이터 합성, 콘텐츠 요약 및 생성, 개인화된 추천 및 인사이트, 코드 및 개발자 생산성 및 기타 애플리케이션이 포함됩니다. 최종 사용자 세그먼트에는 의료 및 생명 과학, 소매 및 전자상거래, 금융 서비스, 통신, 교육, 미디어 및 엔터테인먼트, 소프트웨어 및 기술 제공업체 및 기타 최종 사용자가 포함됩니다. 배포 유형 세그먼트에는 온프레미스 및 클라우드가 포함됩니다. 검색 증강 생성(RAG) 시장의 지역별 분석은 북미, 유럽, 아시아 태평양, 중동 및 아프리카, 라틴 아메리카를 포함합니다.

본 보고서는 시장 선도 기업과 신규 진입 기업들에게 글로벌 검색 증강 생성(RAG) 시장 매출 규모 및 세부 세그먼트에 대한 가장 근접한 정보를 제공하는 데 도움이 될 것입니다. 또한 이해관계자들이 경쟁 환경을 이해하고, 통찰력을 얻고, 적절한 시장 진출 전략을 수립하는 데에도 도움이 될 것입니다. 나아가, 본 보고서는 이해관계자들에게 시장의 흐름을 이해하고 주요 시장 동인, 제약, 과제, 그리고 기회에 대한 정보를 제공할 수 있는 통찰력을 제공할 것입니다.

보고서는 다음과 같은 통찰력을 제공합니다.

검색 증강 생성(RAG) 시장 성장에 영향을 미치는 주요 동인(상황 인식 AI 응답을 통한 정확도 향상, 기업 디지털화 가속화), 제약(높은 인프라 비용 관리, 데이터 개인 정보 보호 및 보호 보장), 기회(도메인별 애플리케이션과 RAG 통합, 다국어 지원 확대), 과제(공급업체 분산 관리, AI 환각 위험 완화)에 대한 분석입니다.

  • 제품 개발/혁신: 검색 증강 생성(RAG) 시장의 향후 기술, 연구 개발 활동, 신제품 및 서비스 출시에 대한 자세한 정보를 제공합니다.
  • 시장 개발: 본 보고서는 다양한 지역의 검색 증강 생성(RAG) 시장을 분석하여 수익성이 높은 시장에 대한 포괄적인 정보를 제공합니다.
  • 시장 다각화: 검색 증강 생성(RAG) 시장의 신제품 및 서비스, 미개척 지역, 최근 동향, 투자 등에 대한 포괄적인 정보를 제공합니다.

Report Description

MarketsandMarkets: The retrieval-augmented generation (RAG) market is estimated to be USD 1.94 billion in 2025 and is projected to reach USD 9.86 billion by 2030 at a CAGR of 38.4%.

Major technology companies, including Microsoft, AWS, Google, Anthropic, and Cohere, are heavily investing in RAG-powered solutions, integrations, and partnerships. Cloud hyperscalers are embedding RAG into their enterprise AI offerings, such as Azure OpenAI Service and AWS Bedrock, making it easier for businesses to integrate retrieval capabilities into their generative AI applications. This ecosystem expansion not only raises awareness of RAG but also lowers barriers to adoption by providing enterprises with ready-to-use, scalable solutions. Continued venture funding into RAG startups and partnerships between model providers and retrieval infrastructure vendors further accelerate the market’s growth trajectory.

검색 증강 생성(RAG) 시장 규모, 성장 및 동향 분석 보고서 – 2030년까지의 세계 예측
Retrieval-Augmented Generation (RAG) Market – Global Forecast To 2030

“Data management and indexing layer solution segment to witness significant growth during forecast period.”

As enterprises continue to handle massive volumes of structured and unstructured data, robust indexing and efficient data management become critical for optimal RAG performance. Advances in vector databases, embeddings, and real-time data ingestion are driving rapid adoption of these solutions. With increasing demand for high-quality data retrieval, low-latency performance, and scalable architecture, the data management and indexing layer is projected to grow at the fastest rate, particularly in sectors with complex datasets like healthcare, financial services, and life sciences.

검색 증강 생성(RAG) 시장 규모, 성장 및 동향 분석 보고서 – 2030년까지의 세계 예측 - by offering
Retrieval-Augmented Generation (RAG) Market – Global Forecast To 2030 – by offering

“By type, foundational and enhanced RAG segment to lead market during forecast period.”

Foundational and enhanced RAG is projected to account for the largest market share due to its early adoption across enterprises seeking reliable retrieval-augmented generative capabilities. This type combines large language models with robust retrieval architectures, enabling organizations to integrate structured and unstructured data sources for enhanced decision-making and knowledge generation. Foundational RAG solutions are widely deployed in enterprise search, content summarization, and domain-specific data synthesis, offering high accuracy, scalability, and operational efficiency. Enhanced RAG variants further improve the performance of foundational models by incorporating fine-tuned domain knowledge, relevance ranking, and advanced embedding mechanisms. Enterprises favor this type for its stability, established use cases, and proven ROI, making it the most prominent sub-segment in terms of market size. Additionally, technology vendors continue to enhance foundational RAG platforms with pre-trained models and plug-and-play integration capabilities, further reinforcing their market leadership.

검색 증강 생성(RAG) 시장 규모, 성장 및 동향 분석 보고서 – 2030년까지의 세계 예측 - region
Retrieval-Augmented Generation (RAG) Market – Global Forecast To 2030 – region

“Asia Pacific to record highest growth rate during forecast period.”

Asia Pacific is becoming a key growth hub for the RAG market, driven by strong enterprise demand and a rapidly growing developer community. Companies in the region are using RAG to manage complex, data-heavy industries like healthcare, logistics, and energy. The rollout of cloud-based systems and 5G networks is opening up new opportunities for RAG-powered assistants and knowledge tools at the edge. Growth in the Asia Pacific comes from partnerships between governments, global tech giants, and local players, which ensures solutions meet local rules and cultural needs. Making Asia Pacific not just a fast adopter, but also a region that will influence the global future of RAG, especially in areas like multimodal and cross-domain AI.

Breakdown of primaries

The study contains insights from various industry experts, from solution vendors to Tier 1 companies. The break-up of the primaries is as follows:

  • By Company Type: Tier 1 – 35%, Tier 2 – 45%, and Tier 3 – 20%
  • By Designation: C-level –35%, D-level – 30%, and Others – 35%
  • By Region: North America – 40%, Europe – 20%, Asia Pacific – 25%, Middle East & Africa – 9%, Latin America – 6%

The major players in the retrieval-augmented generation (RAG) market include Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US). These players have adopted various growth strategies, such as partnerships, agreements, collaborations, new product launches, enhancements, and acquisitions, to expand their market footprint.

검색 증강 생성(RAG) 시장 규모, 성장 및 동향 분석 보고서 – 2030년까지의 세계 예측 - ecosystem
Retrieval-Augmented Generation (RAG) Market – Global Forecast To 2030 – ecosystem

Research Coverage

The market study covers the retrieval-augmented generation (RAG) market size and growth potential across different segments, including offering, type, application, end user, deployment type, and region. The offerings studied include solutions (RAG-enabled platforms, data management and indexing layers, retrieval & search models, and other solutions), and services (managed and professional). The type segment includes foundational & enhanced RAG, agentic & adaptive RAG, knowledge-structured & memory-based RAG, privacy-preserving & distributed RAG, and other types. The application segment includes enterprise search, domain-specific data synthesis, content summarization & generation, personalized recommendations & insights, code & developer productivity, and other applications. The end user segment includes healthcare & life sciences, retail & e-commerce, financial services, telecommunications, education, media & entertainment, software & technology providers, and other end users. The deployment type segment includes on-premises and cloud. The regional analysis of the retrieval-augmented generation (RAG) market covers North America, Europe, Asia Pacific, the Middle East & Africa, and Latin America.

Key Benefits of Buying the Report

The report will help market leaders and new entrants with information on the closest approximations of the global retrieval-augmented generation (RAG) market’s revenue numbers and subsegments. It will also help stakeholders understand the competitive landscape, gain insights, and plan suitable go-to-market strategies. Moreover, the report will provide insights for stakeholders to understand the market’s pulse and provide them with information on key market drivers, restraints, challenges, and opportunities.

The report provides the following insights.

Analysis of key drivers (Enhancing accuracy with context-aware AI responses, accelerating enterprise digitization), restraints (Managing high infrastructure costs, ensuring data privacy and protection), opportunities (Integrating RAG with domain-specific applications, expanding multilingual support), and challenges (Managing vendor fragmentation, mitigating risks of AI hallucinations) that are influencing the growth of the retrieval-augmented generation (RAG) market.

  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the retrieval-augmented generation (RAG) market
  • Market Development: The report provides comprehensive information about lucrative markets, analyzing the retrieval-augmented generation (RAG) market across various regions.
  • Market Diversification: Comprehensive information about new products and services, untapped geographies, recent developments, and investments in the retrieval-augmented generation (RAG) market.

Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players such as Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US).

Table of Contents

1               INTRODUCTION              29

1.1           STUDY OBJECTIVES       29

1.2           MARKET DEFINITION   29

1.3           STUDY SCOPE   30

1.3.1        MARKET SEGMENTATION AND REGIONS COVERED                 30

1.3.2        INCLUSIONS AND EXCLUSIONS 31

1.4           YEARS CONSIDERED      31

1.5           CURRENCY CONSIDERED            32

1.6           STAKEHOLDERS               32

2               RESEARCH METHODOLOGY       33

2.1           RESEARCH DATA              33

2.1.1        SECONDARY DATA          34

2.1.2        PRIMARY DATA 34

2.1.2.1    Breakdown of primary profiles           35

2.2           MARKET SIZE ESTIMATION         35

2.2.1        TOP-DOWN APPROACH                36

2.2.2        BOTTOM-UP APPROACH              37

2.2.3        RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ESTIMATION: DEMAND-SIDE ANALYSIS                38

2.3           DATA TRIANGULATION                39

2.4           RISK ASSESSMENT           40

2.5           RESEARCH ASSUMPTIONS           40

2.6           RESEARCH LIMITATIONS             41

3               EXECUTIVE SUMMARY  42

4               PREMIUM INSIGHTS       45

4.1           ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET                 45

4.2          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY OFFERING    45

4.3          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY SOLUTION   46

4.4          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE               46

4.5          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY APPLICATION             47

4.6          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE 47

4.7          RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY END USER     48

4.8           NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER AND REGION                 48

5               MARKET OVERVIEW AND INDUSTRY TRENDS    49

5.1           INTRODUCTION              49

5.2           MARKET DYNAMICS       49

5.2.1        DRIVERS               50

5.2.1.1    Enhancing Accuracy with Context-aware AI Responses                 50

5.2.1.2    Accelerating Enterprise Digitalization              51

5.2.2        RESTRAINTS      51

5.2.2.1    Managing High Infrastructure Costs 51

5.2.2.2    Ensuring Data Privacy and Protection              51

5.2.3        OPPORTUNITIES              52

5.2.3.1    Integrating RAG with Domain-specific Applications     52

5.2.3.2    Expanding Multilingual Support        52

5.2.4        CHALLENGES    52

5.2.4.1    Mitigating Risks of AI Hallucinations                52

5.2.4.2    Managing Vendor Fragmentation      52

5.3           RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRIEF HISTORY             53

5.4           SUPPLY CHAIN ANALYSIS             54

5.5           ECOSYSTEM       56

5.6           CASE STUDIES  57

5.6.1        FILEVINE AND ZILLIZ CLOUD REVOLUTIONIZED CASE MANAGEMENT WITH VECTOR SEARCH 57

5.6.2        NEOPLE ASSISTANTS TRANSFORMING CUSTOMER SERVICE WITH WEAVIATE           58

5.6.3        DUST ADDRESSED COMPLEXITIES FACED BY QDRANT BY DEPLOYING LLMS     58

5.7           PORTER’S FIVE FORCES MODEL                59

5.7.1        THREAT OF NEW ENTRANTS      60

5.7.2        THREAT OF SUBSTITUTES          60

5.7.3        BARGAINING POWER OF BUYERS             60

5.7.4        BARGAINING POWER OF SUPPLIERS       60

5.7.5        INTENSITY OF COMPETITIVE RIVALRY 60

5.8           PATENT ANALYSIS          60

5.8.1        METHODOLOGY              60

5.8.2        LIST OF PATENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2020–2024               61

5.9           DISRUPTIONS IMPACTING BUYERS/CLIENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET                 62

5.10         PRICING ANALYSIS          63

5.10.1      AVERAGE SELLING PRICE OF KEY PLAYERS, 2024                 63

5.10.2      INDICATIVE PRICING ANALYSIS OF KEY PLAYERS, BY SOLUTION, 2024                63

5.11         KEY STAKEHOLDERS AND BUYING CRITERIA     65

5.11.1      KEY STAKEHOLDERS IN BUYING PROCESS           65

5.11.2      BUYING CRITERIA           66

5.12         TECHNOLOGY ANALYSIS             66

5.12.1      KEY TECHNOLOGIES     66

5.12.1.1  Large Language Models (LLMs) and Transformer-based Generators             66

5.12.1.2  Embedding Models              67

5.12.1.3  Dense Retrieval Mechanisms              67

5.12.1.4  Vector Databases 67

5.12.2      COMPLEMENTARY TECHNOLOGIES       68

5.12.2.1  Reranking Models                 68

5.12.2.2  Knowledge Graphs               68

5.12.2.3  Semantic Search and NLP Techniques             68

5.12.2.4  Reasoning and Memory Modules      68

5.12.3      ADJACENT TECHNOLOGIES       69

5.12.3.1  Multimodal AI Processing  69

5.12.3.2  Data Privacy and Security Tools        69

5.12.3.3  AI/ML Frameworks and Orchestration Tools 69

5.13         REGULATORY LANDSCAPE         70

5.13.1      REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS             70

5.13.2      KEY REGULATIONS         73

5.13.2.1  North America      73

5.13.2.1.1                California Consumer Privacy Act (CCPA)       73

5.13.2.1.2                Canada’s Directive on Automated Decision-making                 73

5.13.2.1.3                AI and Automated Decision Systems (AADS) Ordinance (New York City)                73

5.13.2.2  Europe   73

5.13.2.2.1                General Data Protection Regulation (GDPR) 73

5.13.2.2.2                European Union’s Artificial Intelligence Act (AIA)                 73

5.13.2.2.3                Ethical Guidelines for Trustworthy AI by the European Commission           73

5.13.2.3  Asia Pacific            73

5.13.2.3.1                Personal Information Protection Law (PIPL) – China                 73

5.13.2.3.2                Artificial Intelligence Ethics Guidelines – Japan                 74

5.13.2.3.3                AI Strategy and Governance Framework – Australia                 74

5.13.2.4  Middle East & Africa            74

5.13.2.4.1                UAE AI Regulation and Ethics Guidelines       74

5.13.2.4.2                South Africa’s Protection of Personal Information Act (POPIA)                74

5.13.2.4.3                Egypt’s Data Protection Law              74

5.13.2.5  Latin America       74

5.13.2.5.1                Brazil – General Data Protection Law (LGPD)                 74

5.13.2.5.2                Mexico – Federal Law on the Protection of Personal Data Held by Private Parties (LFPDPPP)      75

5.13.2.5.3                Argentina – Personal Data Protection Law (PDPL)                 75

5.14         KEY CONFERENCES & EVENTS   75

5.15         TECHNOLOGY ROADMAP FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET       75

5.15.1      SHORT-TERM ROADMAP (2025-2026)       76

5.15.2      MID-TERM ROADMAP (2027–2028)            76

5.15.3      LONG-TERM ROADMAP (2029–2030)        76

5.16         BEST PRACTICES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET    76

5.16.1      ENSURE HIGH-QUALITY KNOWLEDGE BASES    76

5.16.2      IMPLEMENT HYBRID SEARCH TECHNIQUES       76

5.16.3      ADOPT EXPLAINABLE AI PRACTICES      76

5.16.4      HUMAN-IN-THE-LOOP MECHANISMS    77

5.16.5      EMBED SECURITY AND COMPLIANCE FROM THE START                 77

5.16.6      OPTIMIZE FOR LATENCY AND SCALE    77

5.16.7      MAINTAIN CONTINUOUS FEEDBACK LOOPS      77

5.17         CURRENT AND EMERGING BUSINESS MODELS 77

5.18         TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET                 78

5.19         INVESTMENT AND FUNDING SCENARIO               78

5.20         IMPACT OF AI/GENERATIVE AI ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET       78

5.20.1      USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)          79

5.21         IMPACT OF 2025 US TARIFF – RAG MARKET         80

5.21.1      INTRODUCTION              80

5.21.2      KEY TARIFF RATES          80

5.21.3      PRICE IMPACT ANALYSIS             81

5.21.3.1  Strategic Shifts and Emerging Trends               81

5.21.4      IMPACT ON COUNTRY/REGION                82

5.21.4.1  US           82

5.21.4.2  Asia Pacific            82

5.21.4.3  Europe   82

5.21.5      IMPACT ON END-USE INDUSTRIES          83

5.21.5.1  Healthcare & Life Sciences 83

5.21.5.2  Retail & E-commerce           83

5.21.5.3  Media & Entertainment       83

5.21.5.4  Financial Services 83

6             RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY OFFERING    84

6.1           INTRODUCTION              85

6.1.1        OFFERING: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS              85

6.2           SOLUTIONS        86

6.2.1        RAG SOLUTIONS TO EVOLVE TOWARD MORE AUTONOMOUS AND ADAPTIVE FRAMEWORKS 86

6.2.2        RAG-ENABLED PLATFORMS        87

6.2.3        DATA MANAGEMENT AND INDEXING LAYER     88

6.2.3.1    Need for scalable and intelligent indexing drives solution growth                 88

6.2.4        RETRIEVAL AND SEARCH MODELS          89

6.2.4.1    Growing enterprise needs for contextual intelligence    89

6.2.5        OTHER SOLUTIONS        89

6.3           SERVICES             90

6.3.1        STREAMLINING ACADEMIC AND ADMINISTRATIVE OPERATIONS VIA INTEGRATED DIGITAL SYSTEMS         90

6.3.2        MANAGED SERVICES      91

6.3.2.1    Simplifying RAG Operations and Enhancing Scalability                 91

6.3.3        PROFESSIONAL SERVICES            92

6.3.3.1    Driving Tailored Implementation and Performance Optimization         92

6.3.3.2    Support and Maintenance   93

6.3.3.3    Consulting and Customization           94

6.3.3.4    Training and Development 94

7             RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE               96

7.1           INTRODUCTION              97

7.1.1        TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS            97

7.2           FOUNDATIONAL AND ENHANCED RAG                 98

7.2.1        FOUNDATIONAL AND ENHANCED RAG BUILDING BLOCK FOR ADVANCED AI SYSTEMS      98

7.3           AGENTIC AND ADAPTIVE RAG  99

7.3.1        ENABLING DYNAMIC AND AUTONOMOUS INTELLIGENCE 99

7.4           KNOWLEDGE-STRUCTURED AND MEMORY-BASED RAG                 99

7.4.1        KNOWLEDGE-STRUCTURED & MEMORY-BASED RAG ENHANCING CONTEXTUAL REASONING AND LONG-TERM RECALL                 99

7.5           PRIVACY-PRESERVING AND DISTRIBUTED RAG                 100

7.5.1        PRIVACY-PRESERVING & DISTRIBUTED RAG SECURING KNOWLEDGE RETRIEVAL IN ERA OF DATA COMPLIANCE                 100

7.6           OTHER TYPES   101

8             RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY APPLICATION             102

8.1           INTRODUCTION              103

8.1.1        APPLICATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS              103

8.2           ENTERPRISE SEARCH     104

8.2.1        ENTERPRISE SEARCH FUELED BY EXPONENTIAL GROWTH OF INTERNAL DATA  104

8.3           DOMAIN-SPECIFIC DATA SYNTHESIS     105

8.3.1        GROWING COMPLEXITY OF DOMAIN DATA DRIVES ADOPTION         105

8.4           CONTENT SUMMARIZATION AND GENERATION                 105

8.4.1        AUTOMATE NARRATIVE CREATION TO BOOST KNOWLEDGE THROUGHPUT     105

8.5           PERSONALIZED RECOMMENDATIONS AND INSIGHTS                 106

8.5.1        FOCUS ON USER-CENTRIC EXPERIENCES DRIVES ITS GROWTH             106

8.6           CODE AND DEVELOPER PRODUCTIVITY              107

8.6.1        AI-DRIVEN DEVELOPMENT TOOLS FUEL ADOPTION                 107

8.7           OTHER APPLICATIONS 107

9             RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY DEPLOYMENT TYPE 109

9.1           INTRODUCTION              110

9.1.1        DEPLOYMENT TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS 110

9.2           ON-PREMISES   111

9.2.1        LOCALIZED AI-DRIVEN RETRIEVAL AND REASONING TO INCREASE AS REGULATORY SCRUTINY AROUND DATA USAGE INTENSIFIES       111

9.3           CLOUD 111

9.3.1        ACCELERATING SCALABILITY AND REAL-TIME INTELLIGENCE 111

10           RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY END USER     113

10.1         INTRODUCTION              114

10.1.1      END USER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS              114

10.2         HEALTHCARE AND LIFE SCIENCES          115

10.2.1      ENHANCING CLINICAL INTELLIGENCE AND PATIENT OUTCOMES        115

10.3         RETAIL & E-COMMERCE                116

10.3.1      DRIVING PERSONALIZED AND CONTEXTUAL SHOPPING EXPERIENCES             116

10.4         FINANCIAL SERVICES     116

10.4.1      FINANCIAL SERVICES REINFORCING COMPLIANCE AND KNOWLEDGE AUTOMATION     116

10.5         TELECOMMUNICATIONS             117

10.5.1      POWERING INTELLIGENT NETWORK AND SERVICE AUTOMATION  117

10.6         EDUCATION      118

10.6.1      ADVANCING ADAPTIVE AND KNOWLEDGE-RICH LEARNING           118

10.7         MEDIA & ENTERTAINMENT        118

10.7.1      ACCELERATING CREATIVE AND CONTEXTUAL CONTENT GENERATION              118

10.8         OTHER END USERS         119

11           RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION         120

11.1         INTRODUCTION              121

11.2         NORTH AMERICA             121

11.2.1      NORTH AMERICA: MACROECONOMIC OUTLOOK                 121

11.2.2      US           125

11.2.2.1  Supportive regulatory environment and ecosystem-led commercialization of RAG  125

11.2.3      CANADA               128

11.2.3.1  Leveraging RAG technologies to enhance transparency and sectoral innovation                128

11.3         EUROPE               131

11.3.1      EUROPE: MACROECONOMIC OUTLOOK               131

11.3.2      UK          134

11.3.2.1  Driving enterprise adoption of RAG under strong regulatory frameworks            134

11.3.3      GERMANY           137

11.3.3.1  Industrial applications and compliance-driven RAG adoption                 137

11.3.4      FRANCE                140

11.3.4.1  Strengthening multilingual RAG solutions through public–private collaboration             140

11.3.5      ITALY    143

11.3.5.1  Adoption of RAG to modernize knowledge-intensive industries                 143

11.3.6      REST OF EUROPE             146

11.4         ASIA PACIFIC     146

11.4.1      ASIA PACIFIC: MACROECONOMIC OUTLOOK     147

11.4.2      CHINA  150

11.4.2.1  Domestic Vector & Knowledge-enhanced Models Power Large-scale RAG              150

11.4.3      INDIA    153

11.4.3.1  Public Pilots and SI Packages Convert RAG Trials into Production             153

11.4.4      JAPAN   156

11.4.4.1  SI-led, Language-aware RAG for Manufacturing and Service Sectors   156

11.4.5      AUSTRALIA & NEW ZEALAND     159

11.4.5.1  Government Pilots Driving Trusted RAG Use Cases    159

11.4.6      SOUTH KOREA  162

11.4.6.1  Telcos and Domestic Clouds Anchoring Sovereign RAG                 162

11.4.7      REST OF ASIA PACIFIC   165

11.5         MIDDLE EAST & AFRICA                165

11.5.1      MIDDLE EAST & AFRICA: MACROECONOMIC OUTLOOK                 166

11.5.2      UNITED ARAB EMIRATES             169

11.5.2.1  National AI Programs Anchoring RAG Commercialization                 169

11.5.3      KINGDOM OF SAUDI ARABIA     172

11.5.3.1  Vision 2030 Investments Scaling Knowledge-centric AI                 172

11.5.4      SOUTH AFRICA 174

11.5.4.1  Academic and Startup Ecosystem Piloting RAG             174

11.5.5      REST OF MIDDLE EAST & AFRICA             177

11.6         LATIN AMERICA                177

11.6.1      LATIN AMERICA: MACROECONOMIC OUTLOOK                 178

11.6.2      BRAZIL 181

11.6.2.1  Legislative Pilots Driving Public-Sector RAG 181

11.6.3      MEXICO                184

11.6.3.1  SI adaptation of Spanish-language RAG for enterprise support                 184

11.6.4      REST OF LATIN AMERICA             186

12            COMPETITIVE LANDSCAPE         187

12.1         INTRODUCTION              187

12.2         KEY PLAYER STRATEGIES/RIGHT TO WIN, 2022–2025                 187

12.3         REVENUE ANALYSIS, 2024             188

12.4         MARKET SHARE ANALYSIS, 2024                 188

12.5         BRAND/PRODUCT COMPARISON             191

12.6         COMPANY VALUATION AND FINANCIAL METRICS                 192

12.7         COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024                 193

12.7.1      STARS   193

12.7.2      EMERGING LEADERS     193

12.7.3      PERVASIVE PLAYERS      193

12.7.4      PARTICIPANTS 194

12.7.5      COMPANY FOOTPRINT: KEY PLAYERS, 2024         195

12.7.5.1  Company footprint               195

12.7.5.2  Region footprint   195

12.7.5.3  Deployment type footprint 196

12.7.5.4  End user footprint                 196

12.8         COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024        197

12.8.1      PROGRESSIVE COMPANIES         197

12.8.2      RESPONSIVE COMPANIES            197

12.8.3      DYNAMIC COMPANIES  197

12.8.4      STARTING BLOCKS         197

12.8.5      COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024                 199

12.8.5.1  Detailed list of key startups/SMEs    199

12.8.5.2  Competitive benchmarking of key startups/SMEs          199

12.9         COMPETITIVE SCENARIO             200

12.9.1      PRODUCT LAUNCHES   200

12.9.2      DEALS  201

13            COMPANY PROFILES      203

13.1         INTRODUCTION              203

13.2         KEY PLAYERS     203

13.2.1      MICROSOFT       203

13.2.1.1  Business overview 203

13.2.1.2  Products/Solutions/Services offered 204

13.2.1.3  Recent developments           205

13.2.1.3.1                Product launches  205

13.2.1.3.2                Deals      205

13.2.1.4  MnM view              206

13.2.1.4.1                Key strengths        206

13.2.1.4.2                Strategic choices   206

13.2.1.4.3                Weaknesses and competitive threats 206

13.2.2      AWS       207

13.2.2.1  Business overview 207

13.2.2.2  Products/Solutions/Services offered 208

13.2.2.3  Recent developments           208

13.2.2.3.1                Deals      208

13.2.2.4  MnM view              209

13.2.2.4.1                Key strengths        209

13.2.2.4.2                Strategic choices   209

13.2.2.4.3                Weaknesses and competitive threats 209

13.2.3      GOOGLE              210

13.2.3.1  Business overview 210

13.2.3.2  Products/Solutions/Services offered 211

13.2.3.3  Recent developments           212

13.2.3.3.1                Deals      212

13.2.3.4  MnM view              212

13.2.3.4.1                Key strengths        212

13.2.3.4.2                Strategic choices   212

13.2.3.4.3                Weaknesses and competitive threats 213

13.2.4      ANTHROPIC       214

13.2.4.1  Business overview 214

13.2.4.2  Products/Solutions/Services offered 214

13.2.4.3  Recent developments           214

13.2.4.3.1                Deals      214

13.2.5      IBM        215

13.2.5.1  Business overview 215

13.2.5.2  Products/Solutions/Services offered 216

13.2.5.3  Recent developments           217

13.2.5.3.1                Deals      217

13.2.6      NVIDIA 218

13.2.6.1  Business overview 218

13.2.6.2  Products/Solutions/Services offered 219

13.2.6.3  Recent developments           220

13.2.6.3.1                Deals      220

13.2.7      COHERE               221

13.2.7.1  Business overview 221

13.2.7.2  Products/Solutions/Services offered 221

13.2.7.3  Recent developments           222

13.2.7.3.1                Deals      222

13.2.8      PINECONE          223

13.2.8.1  Business overview 223

13.2.8.2  Products/Solutions/Services offered 223

13.2.8.3  Recent developments           223

13.2.8.3.1                Deals      223

13.2.9      ELASTIC               225

13.2.9.1  Business overview 225

13.2.9.2  Products/Solutions/Services offered 226

13.2.9.3  Recent developments           227

13.2.9.3.1                Deals      227

13.2.10   MONGODB         228

13.2.10.1                 Business overview 228

13.2.10.2                 Products/Solutions/Services offered 229

13.2.10.3                 Recent developments           229

13.2.10.3.1             Product launches  229

13.2.10.3.2             Deals      229

13.3         OTHER PLAYERS              230

13.3.1      PROGRESS SOFTWARE  230

13.3.2      RAGIE.AI              230

13.3.3      CLARIFAI             231

13.3.4      VECTARA             231

13.3.5      WEAVIATE          232

13.3.6      CHATBEES          232

13.3.7      ZILLIZ   233

13.3.8      QDRANT              234

14            ADJACENT/RELATED MARKETS                235

14.1         INTRODUCTION              235

14.2         GENERATIVE AI MARKET              235

14.2.1      MARKET DEFINITION   235

14.2.2      MARKET OVERVIEW       235

14.2.3      GENERATIVE AI MARKET, BY OFFERING               235

14.2.4      GENERATIVE AI MARKET, BY DATA MODALITY 236

14.2.5      GENERATIVE AI MARKET, BY APPLICATION        237

14.2.6      GENERATIVE AI MARKET, BY END USER                238

14.2.7      GENERATIVE AI MARKET, BY REGION    239

14.3         LARGE LANGUAGE MODEL (LLM) MARKET         240

14.3.1      MARKET DEFINITION   240

14.3.2      MARKET OVERVIEW       240

14.3.3      LARGE LANGUAGE MODEL (LLM) MARKET, BY OFFERING           241

14.3.4      LARGE LANGUAGE MODEL (LLM) MARKET, BY ARCHITECTURE                242

14.3.5      LARGE LANGUAGE MODEL (LLM) MARKET, BY MODALITY         243

14.3.6      LARGE LANGUAGE MODEL (LLM) MARKET, BY MODEL SIZE       244

14.3.7      LARGE LANGUAGE MODEL (LLM) MARKET, BY APPLICATION   245

14.3.8      LARGE LANGUAGE MODEL (LLM) MARKET, BY END USER     247

14.3.9      LARGE LANGUAGE MODEL (LLM) MARKET, BY REGION                 248

15            APPENDIX           250

15.1         DISCUSSION GUIDE        250

15.2         KNOWLEDGESTORE: MARKETSANDMARKETS’  SUBSCRIPTION PORTAL                254

15.3         CUSTOMIZATION OPTIONS        256

15.4         RELATED REPORTS         256

15.5         AUTHOR DETAILS           257

LIST OF TABLES

TABLE 1                USD EXCHANGE RATES, 2020–2024            32

TABLE 2                RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: ECOSYSTEM   56

TABLE 3                IMPACT OF PORTER’S FORCES ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET       59

TABLE 4                INDICATIVE PRICING ANALYSIS OF KEY RETRIEVAL-AUGMENTED GENERATION (RAG), BY SOLUTION, 2024        64

TABLE 5                INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS (%)           65

TABLE 6                KEY BUYING CRITERIA FOR TOP THREE END USERS   66

TABLE 7                NORTH AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS                 70

TABLE 8                EUROPE: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS           71

TABLE 9                ASIA PACIFIC: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS                 71

TABLE 10              MIDDLE EAST & AFRICA: REGULATORY BODIES, GOVERNMENT AGENCIES,  AND OTHER ORGANIZATIONS                 72

TABLE 11              LATIN AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS                 72

TABLE 12              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: KEY CONFERENCES & EVENTS, 2025–2026          75

TABLE 13              US ADJUSTED RECIPROCAL TARIFF RATES                 80

TABLE 14              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,

2024–2030 (USD MILLION)            86

TABLE 15              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,

2024–2030 (USD MILLION)            87

TABLE 16              SOLUTION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,  2024–2030 (USD MILLION)            87

TABLE 17              RAG-ENABLED PLATFORMS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       88

TABLE 18              DATA MANAGEMENT AND INDEXING LAYER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          88

TABLE 19              RETRIEVAL AND SEARCH MODELS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)       89

TABLE 20              OTHER SOLUTIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION,  2024–2030 (USD MILLION)                 90

TABLE 21              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            91

TABLE 22              SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,  2024–2030 (USD MILLION)            91

TABLE 23              MANAGED SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   92

TABLE 24              PROFESSIONAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       93

TABLE 25              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE,  2024–2030 (USD MILLION)            93

TABLE 26              SUPPORT AND MAINTENANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       94

TABLE 27              CONSULTING AND CUSTOMIZATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          94

TABLE 28              TRAINING AND DEVELOPMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       95

TABLE 29              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            98

TABLE 30              FOUNDATIONAL AND ENHANCED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          98

TABLE 31              AGENTIC AND ADAPTIVE RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       99

TABLE 32              KNOWLEDGE-STRUCTURE AND MEMORY-BASED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)                100

TABLE 33              PRIVACY-PRESERVING AND DISTRIBUTED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          100

TABLE 34              OTHER TYPES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,  2024–2030 (USD MILLION)            101

TABLE 35              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,

2024–2030 (USD MILLION)            104

TABLE 36              ENTERPRISE SEARCH: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   104

TABLE 37              DOMAIN-SPECIFIC DATA SYNTHESIS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          105

TABLE 38              CONTENT SUMMARIZATION AND GENERATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)                106

TABLE 39              PERSONALIZED RECOMMENDATIONS AND INSIGHTS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)                106

TABLE 40              CODE AND DEVELOPER PRODUCTIVITY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024–2030 (USD MILLION)          107

TABLE 41              OTHER APPLICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   108

TABLE 42              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE,  2024–2030 (USD MILLION)                 110

TABLE 43              ON-PREMISES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,  2024–2030 (USD MILLION)            111

TABLE 44              CLOUD: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,

2024–2030 (USD MILLION)            112

TABLE 45              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,

2024–2030 (USD MILLION)            115

TABLE 46              HEALTHCARE & LIFE SCIENCES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       115

TABLE 47              RETAIL & E-COMMERCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   116

TABLE 48              FINANCIAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   117

TABLE 49              TELECOMMUNICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       117

TABLE 50              EDUCATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,  2024–2030 (USD MILLION)            118

TABLE 51              MEDIA & ENTERTAINMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY REGION, 2024–2030 (USD MILLION)       119

TABLE 52              OTHER END USERS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY REGION, 2024–2030 (USD MILLION)   119

TABLE 53              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION,

2024–2030 (USD MILLION)            121

TABLE 54              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY 0FFERING, 2024–2030 (USD MILLION)                122

TABLE 55              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SOLUTION,  2024–2030 (USD MILLION)           122

TABLE 56              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SERVICE, 2024–2030 (USD MILLION)  123

TABLE 57              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 123

TABLE 58              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,  2024–2030 (USD MILLION)            123

TABLE 59              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       124

TABLE 60              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          124

TABLE 61              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024–2030 (USD MILLION)            124

TABLE 62              NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY COUNTRY,  2024–2030 (USD MILLION)            125

TABLE 63              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,

2024–2030 (USD MILLION)            125

TABLE 64              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,

2024–2030 (USD MILLION)            126

TABLE 65              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            126

TABLE 66              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            126

TABLE 67              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            127

TABLE 68              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 127

TABLE 69              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE,  2024–2030 (USD MILLION)            127

TABLE 70              US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,

2024–2030 (USD MILLION)            128

TABLE 71              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            128

TABLE 72              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            129

TABLE 73              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            129

TABLE 74              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            129

TABLE 75              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            130

TABLE 76              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION) 130

TABLE 77              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)       130

TABLE 78              CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            131

TABLE 79              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            132

TABLE 80              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            132

TABLE 81              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            132

TABLE 82              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 132

TABLE 83              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            133

TABLE 84              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION) 133

TABLE 85              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)       133

TABLE 86              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            134

TABLE 87              EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY,  2024–2030 (USD MILLION)            134

TABLE 88              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,

2024–2030 (USD MILLION)            135

TABLE 89              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,

2024–2030 (USD MILLION)            135

TABLE 90              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            135

TABLE 91              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            135

TABLE 92              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            136

TABLE 93              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 136

TABLE 94              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE,  2024–2030 (USD MILLION)            136

TABLE 95              UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,

2024–2030 (USD MILLION)            137

TABLE 96              GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            137

TABLE 97              GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            138

TABLE 98              GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            138

TABLE 99              GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 138

TABLE 100            GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,  2024–2030 (USD MILLION)            139

TABLE 101            GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       139

TABLE 102            GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          139

TABLE 103            GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            140

TABLE 104            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            140

TABLE 105            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            141

TABLE 106            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            141

TABLE 107            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            141

TABLE 108            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            142

TABLE 109            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION) 142

TABLE 110            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)       142

TABLE 111            FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            143

TABLE 112            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)                 143

TABLE 113            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)                 144

TABLE 114            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            144

TABLE 115            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            144

TABLE 116            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            145

TABLE 117            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 145

TABLE 118            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            145

TABLE 119            ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)                 146

TABLE 120            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY 0FFERING, 2024–2030 (USD MILLION)            148

TABLE 121            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            148

TABLE 122            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            148

TABLE 123            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 148

TABLE 124            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,  2024–2030 (USD MILLION)            149

TABLE 125            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       149

TABLE 126            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          149

TABLE 127            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024–2030 (USD MILLION)            150

TABLE 128            ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY,  2024–2030 (USD MILLION)            150

TABLE 129            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)                 151

TABLE 130            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)                 151

TABLE 131            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            151

TABLE 132            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            151

TABLE 133            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            152

TABLE 134            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 152

TABLE 135            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            152

TABLE 136            CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)                 153

TABLE 137            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)                 153

TABLE 138            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)                 154

TABLE 139            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            154

TABLE 140            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            154

TABLE 141            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            155

TABLE 142            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 155

TABLE 143            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            155

TABLE 144            INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)                 156

TABLE 145            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)                 156

TABLE 146            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)                 157

TABLE 147            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            157

TABLE 148            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            157

TABLE 149            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            158

TABLE 150            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 158

TABLE 151            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            158

TABLE 152            JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)                 159

TABLE 153            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY OFFERING, 2024–2030 (USD MILLION)            159

TABLE 154            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY SOLUTION, 2024–2030 (USD MILLION)            160

TABLE 155            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY SERVICE, 2024–2030 (USD MILLION)            160

TABLE 156            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)        160

TABLE 157            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY TYPE, 2024–2030 (USD MILLION)       161

TABLE 158            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY APPLICATION, 2024–2030 (USD MILLION)            161

TABLE 159            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)                161

TABLE 160            AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,  BY END USER, 2024–2030 (USD MILLION)            162

TABLE 161            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY OFFERING, 2024–2030 (USD MILLION)               162

TABLE 162            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SOLUTION,  2024–2030 (USD MILLION)           163

TABLE 163            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SERVICE, 2024–2030 (USD MILLION)  163

TABLE 164            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 163

TABLE 165            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,  2024–2030 (USD MILLION)            164

TABLE 166            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       164

TABLE 167            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          164

TABLE 168            SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024–2030 (USD MILLION)            165

TABLE 169            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY OFFERING, 2024–2030 (USD MILLION)               166

TABLE 170            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SOLUTION, 2024–2030 (USD MILLION)              166

TABLE 171            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SERVICE, 2024–2030 (USD MILLION)  167

TABLE 172            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 167

TABLE 173            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY TYPE, 2024–2030 (USD MILLION)         167

TABLE 174            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       168

TABLE 175            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          168

TABLE 176            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY END USER, 2024–2030 (USD MILLION)               168

TABLE 177            MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY COUNTRY, 2024–2030 (USD MILLION)               169

TABLE 178            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,

2024–2030 (USD MILLION)            169

TABLE 179            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,

2024–2030 (USD MILLION)            169

TABLE 180            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            170

TABLE 181            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            170

TABLE 182            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            170

TABLE 183            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 171

TABLE 184            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            171

TABLE 185            UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,

2024–2030 (USD MILLION)            171

TABLE 186            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,

2024–2030 (USD MILLION)            172

TABLE 187            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,

2024–2030 (USD MILLION)            172

TABLE 188            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,

2024–2030 (USD MILLION)            172

TABLE 189            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            173

TABLE 190            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            173

TABLE 191            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION)                 173

TABLE 192            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)            174

TABLE 193            KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,

2024–2030 (USD MILLION)            174

TABLE 194            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY OFFERING, 2024–2030 (USD MILLION)               174

TABLE 195            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SOLUTION,  2024–2030 (USD MILLION)           175

TABLE 196            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SERVICE, 2024–2030 (USD MILLION)  175

TABLE 197            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 175

TABLE 198            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024–2030 (USD MILLION)            176

TABLE 199            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       176

TABLE 200            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          176

TABLE 201            SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024–2030 (USD MILLION)            177

TABLE 202            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY OFFERING, 2024–2030 (USD MILLION)               178

TABLE 203            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SOLUTION,  2024–2030 (USD MILLION)           178

TABLE 204            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY SERVICE, 2024–2030 (USD MILLION)  179

TABLE 205            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION) 179

TABLE 206            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,  2024–2030 (USD MILLION)            179

TABLE 207            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY APPLICATION, 2024–2030 (USD MILLION)       180

TABLE 208            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)          180

TABLE 209            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024–2030 (USD MILLION)            180

TABLE 210            LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

BY COUNTRY,  2024–2030 (USD MILLION)            181

TABLE 211            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            181

TABLE 212            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            181

TABLE 213            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            182

TABLE 214            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            182

TABLE 215            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            182

TABLE 216            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION) 183

TABLE 217            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)       183

TABLE 218            BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            183

TABLE 219            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING,  2024–2030 (USD MILLION)            184

TABLE 220            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION,  2024–2030 (USD MILLION)            184

TABLE 221            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE,  2024–2030 (USD MILLION)            184

TABLE 222            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024–2030 (USD MILLION)            185

TABLE 223            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE,

2024–2030 (USD MILLION)            185

TABLE 224            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION,  2024–2030 (USD MILLION) 185

TABLE 225            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024–2030 (USD MILLION)       186

TABLE 226            MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER,  2024–2030 (USD MILLION)            186

TABLE 227            OVERVIEW OF STRATEGIES ADOPTED BY KEY RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET PLAYERS, 2022–2025         187

TABLE 228            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEGREE OF COMPETITION    189

TABLE 229            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGION FOOTPRINT 195

TABLE 230            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEPLOYMENT TYPE FOOTPRINT         196

TABLE 231            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: END USER FOOTPRINT              196

TABLE 232            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: LIST OF KEY STARTUPS/SMES                199

TABLE 233            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES              199

TABLE 234            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: PRODUCT LAUNCHES,  JANUARY 2022–APRIL 2025                 200

TABLE 235            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEALS,

JANUARY 2022–APRIL 2025            201

TABLE 236            MICROSOFT: COMPANY OVERVIEW        203

TABLE 237            MICROSOFT: PRODUCTS/SOLUTIONS/SERVICES OFFERED    204

TABLE 238            MICROSOFT: PRODUCT LAUNCHES        205

TABLE 239            MICROSOFT: DEALS       205

TABLE 240            AWS: COMPANY OVERVIEW        207

TABLE 241            AWS: PRODUCTS/SOLUTIONS/SERVICES OFFERED             208

TABLE 242            AWS: DEALS       208

TABLE 243            GOOGLE: COMPANY OVERVIEW               210

TABLE 244            GOOGLE: PRODUCTS/SOLUTIONS/SERVICES OFFERED             211

TABLE 245            GOOGLE: DEALS              212

TABLE 246            ANTHROPIC: COMPANY OVERVIEW        214

TABLE 247            ANTHROPIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED    214

TABLE 248            ANTHROPIC: DEALS       214

TABLE 249            IBM: COMPANY OVERVIEW         215

TABLE 250            IBM: PRODUCTS/SOLUTIONS/SERVICES OFFERED             216

TABLE 251            IBM: DEALS        217

TABLE 252            NVIDIA: COMPANY OVERVIEW  218

TABLE 253            NVIDIA: PRODUCTS/SOLUTIONS/SERVICES OFFERED             219

TABLE 254            NVIDIA: DEALS 220

TABLE 255            COHERE: COMPANY OVERVIEW                221

TABLE 256            COHERE: PRODUCTS/SOLUTIONS/SERVICES OFFERED             221

TABLE 257            COHERE: DEALS               222

TABLE 258            PINECONE: COMPANY OVERVIEW           223

TABLE 259            PINECONE: PRODUCTS/SOLUTIONS/SERVICES OFFERED             223

TABLE 260            PINECONE: DEALS           223

TABLE 261            ELASTIC: COMPANY OVERVIEW                225

TABLE 262            ELASTIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED             226

TABLE 263            ELASTIC: DEALS               227

TABLE 264            MONGODB: COMPANY OVERVIEW          228

TABLE 265            MONGODB: PRODUCTS/SOLUTIONS/SERVICES OFFERED             229

TABLE 266            MONGODB: PRODUCT LAUNCHES          229

TABLE 267            MONGODB: DEALS         229

TABLE 268            GENERATIVE AI MARKET, BY OFFERING, 2020–2024 (USD MILLION)       236

TABLE 269            GENERATIVE AI MARKET, BY OFFERING, 2025–2032 (USD MILLION)       236

TABLE 270            GENERATIVE AI MARKET, BY DATA MODALITY, 2020–2024 (USD MILLION)            237

TABLE 271            GENERATIVE AI MARKET, BY DATA MODALITY, 2025–2032 (USD MILLION)            237

TABLE 272            GENERATIVE AI MARKET, BY APPLICATION, 2020–2024 (USD MILLION)            238

TABLE 273            GENERATIVE AI MARKET, BY APPLICATION, 2025–2032 (USD MILLION)            238

TABLE 274            GENERATIVE AI MARKET, BY END USER, 2020–2024 (USD MILLION)       239

TABLE 275            GENERATIVE AI MARKET, BY END USER, 2025–2032 (USD MILLION)       239

TABLE 276            GENERATIVE AI MARKET, BY REGION, 2020–2024 (USD MILLION) 240

TABLE 277            GENERATIVE AI MARKET, BY REGION, 2025–2032 (USD MILLION) 240

TABLE 278            LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2020–2023 (USD MILLION)     241

TABLE 279            LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2024–2030 (USD MILLION)     241

TABLE 280            LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE,

2020–2023 (USD MILLION)            242

TABLE 281            LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE,

2024–2030 (USD MILLION)            243

TABLE 282            LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2020–2023 (USD MILLION)   243

TABLE 283            LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2024–2030 (USD MILLION)   244

TABLE 284            LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2020–2023 (USD MILLION) 245

TABLE 285            LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2024–2030 (USD MILLION) 245

TABLE 286            LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2020–2023 (USD MILLION)              246

TABLE 287            LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2024–2030 (USD MILLION)              246

TABLE 288            LARGE LANGUAGE MODEL MARKET, BY END USER, 2020–2023 (USD MILLION)                247

TABLE 289            LARGE LANGUAGE MODEL MARKET, BY END USER, 2024–2030 (USD MILLION)                248

TABLE 290            LARGE LANGUAGE MODEL MARKET, BY REGION, 2020–2023 (USD MILLION)          249

TABLE 291            LARGE LANGUAGE MODEL MARKET, BY REGION, 2024–2030 (USD MILLION)          249

LIST OF FIGURES

FIGURE 1              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: RESEARCH DESIGN     33

FIGURE 2              BREAKDOWN OF PRIMARY INTERVIEWS, BY COMPANY TYPE, DESIGNATION, AND REGION  35

FIGURE 3              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: TOP-DOWN AND BOTTOM-UP APPROACHES 36

FIGURE 4              MARKET SIZE ESTIMATION METHODOLOGY—APPROACH 1 (SUPPLY SIDE): REVENUE OF VENDORS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET                 37

FIGURE 5              MARKET SIZE ESTIMATION METHODOLOGY—APPROACH 2 (DEMAND SIDE): RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET    37

FIGURE 6              MARKET SIZE ESTIMATION METHODOLOGY: DEMAND-SIDE ANALYSIS             38

FIGURE 7              MARKET SIZE ESTIMATION USING BOTTOM-UP APPROACH         38

FIGURE 8              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DATA TRIANGULATION            39

FIGURE 9              RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET,

2024–2030 (USD MILLION)            43

FIGURE 10            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGIONAL AND COUNTRY-WISE SHARE, 2025 44

FIGURE 11            RAPID DIGITAL TRANSFORMATION AND GROWING ENTERPRISE AI ADOPTION TO DRIVE MARKET                 45

FIGURE 12            SOLUTIONS SEGMENT TO HOLD LARGER MARKET SHARE IN 2025 45

FIGURE 13            RAG-ENABLED PLATFORMS SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025               46

FIGURE 14            FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025        46

FIGURE 15            ENTERPRISE SEARCH SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025             47

FIGURE 16            CLOUD SEGMENT TO HOLD LARGER MARKET SHARE IN 2025   47

FIGURE 17            HEALTHCARE & LIFE SCIENCES SEGMENT TO LEAD MARKET IN 2025   48

FIGURE 18            HEALTHCARE & LIFE SCIENCES SEGMENT AND US TO ACCOUNT FOR SIGNIFICANT MARKET SHARES IN 2025                 48

FIGURE 19            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES    50

FIGURE 20            BRIEF HISTORY OF RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET    53

FIGURE 21            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: SUPPLY CHAIN ANALYSIS         54

FIGURE 22            KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ECOSYSTEM          56

FIGURE 23            PORTER’S FIVE FORCES ANALYSIS           59

FIGURE 24            MAJOR PATENTS FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET    61

FIGURE 25            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DISRUPTIONS IMPACTING BUYERS/CLIENTS 62

FIGURE 26            AVERAGE SELLING PRICE OF KEY PLAYERS, USD PER MONTH, 2024            63

FIGURE 27            INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS  65

FIGURE 28            KEY BUYING CRITERIA FOR TOP THREE END USERS   66

FIGURE 29            TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET               78

FIGURE 30            INVESTMENT AND FUNDING SCENARIO                 78

FIGURE 31            USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)          79

FIGURE 32            SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD          85

FIGURE 33            DATA MANAGEMENT & INDEXING LAYER SEGMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD                86

FIGURE 34            MANAGED SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD        90

FIGURE 35            TRAINING AND DEVELOPMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD      92

FIGURE 36            FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD                97

FIGURE 37            ENTERPRISE SEARCH SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD 103

FIGURE 38            CLOUD SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD       110

FIGURE 39            HEALTHCARE & LIFE SCIENCES SEGMENT TO HOLD LARGEST MARKET SHARE DURING FORECAST PERIOD                 114

FIGURE 40            NORTH AMERICA: MARKET SNAPSHOT 122

FIGURE 41            ASIA PACIFIC: MARKET SNAPSHOT          147

FIGURE 42            REVENUE ANALYSIS OF KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2022 TO 2024 (USD BILLION) 188

FIGURE 43            SHARES OF LEADING COMPANIES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2024                 189

FIGURE 44            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRAND/PRODUCT COMPARISON         191

FIGURE 45            COMPANY VALUATION OF KEY VENDORS, 2025                 192

FIGURE 46            FINANCIAL METRICS OF KEY VENDORS, 2025                 193

FIGURE 47            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (KEY PLAYERS), 2024                 194

FIGURE 48            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY FOOTPRINT             195

FIGURE 49            RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (STARTUPS/SMES), 2024        198

FIGURE 50            MICROSOFT: COMPANY SNAPSHOT        204

FIGURE 51            AWS: COMPANY SNAPSHOT        207

FIGURE 52            GOOGLE: COMPANY SNAPSHOT               211

FIGURE 53            IBM: COMPANY SNAPSHOT         216

FIGURE 54            NVIDIA: COMPANY SNAPSHOT 219

FIGURE 55            ELASTIC: COMPANY SNAPSHOT                226

FIGURE 56            MONGODB: COMPANY SNAPSHOT          228


    주문/문의폼

    • 리포트 제목은 자동으로 입력됩니다.

    • *항목은 필수항목입니다.

    의뢰분류*

    성함*

    회사명*

    부서명

    이메일*

    전화번호

    저희 사이트를 알게 된 경로를 가르쳐 주세요.

    문의 내용*

    ※개인정보보호정책은여기에서 확인 가능합니다。

    Email 문의도 받고 있습니다.
    아래 주소이며 죄송하지만 "(at)"을 "@"로 바꾸어 보내주시길 부탁드립니다.
    mooneui(at)chosareport-korea.com